
Metalinear Story Agents - an Exploration in Construction and Delivery Interface

By

Yu Chen

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science

at the Massachusetts Institute of Technology

May 23, 2001

Copyright 2001 Yu Chen. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
Department of Electrical Engineering and Computer Science

May 23, 2001

Certified
by__

Glorianna Davenport
Thesis Supervisor

Accepted
by__

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

2

3

Metalinear Story Agents - an Exploration in Construction and Delivery Interface

by

Yu Chen

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 2001

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Our concepts of story and storytelling have popularly been represented through
linear mediums such as books and films. Only in traditions such as theater and oral
storytelling, where an author has direct, instant feedback from the audience, has story
been able to achieve a more malleable form. The present is pivotal because the evolution
of interactive media technology has created new forms of digital expression which enable
more reactive, computational ways of constructing, arranging, and presenting stories. Into
this context, Kevin Brooks' 1999 Ph.D. work created Agent Stories, a metalinear
narrative authoring software tool which employs a software agent-driven engine to
produce one or many possible linear accounts, thus creating multi-linear stories which are
especially well suited for our new interactive mediums. Java has further extended this
system onto the widely distributed environment of the internet, and the possibilities for
collaboration open new dimensions to the art of computational story writing and
storytelling.

Thesis Supervisor : Glorianna Davenport
Title : Principal Research Associate, Director of Interactive Cinema

4

5

Table of Contents

Abstract .. 3

List of Figures .. 7

1 Background ... 9

1.1 Evolution of Cinema.. 9
1.2 Past Research... 12

2 Kevin Brooks’ Agent Stories ... 16

2.1 Intentions.. 16
2.2 The System ... 17
2.2.1 Theory .. 17
2.2.2 Structure ... 21

3 Agent Stories for Java and WWW .. 27

3.1 Previous work .. 27
3.2 Further developments ... 28
3.2.1 Immediate goals.. 28
3.2.2 Long term goals.. 29
3.3 User Interface .. 29
3.3.1 Theory of effective interface design... 31
3.3.2 Interface overview.. 34
3.3.3 Design principles in practice .. 36
3.4 Illustrations of usage ... 41

4 Technical specifications .. 46

4.1 Overview of subsystems .. 46
4.2 Details of subsystems... 46
4.2.1 The ‘as’ package... 47
4.2.2 The ‘agentstories’ package ... 51
4.3 Unfinished features and suggestions for future amendments.. 54

5 Users Manual .. 56

Bibliography... 57

6

7

List of Figures

FIGURE 1 : SIMPLE ARTIST-STORY-AUDIENCE STRUCTURE, WITH FEEDBACK 16

FIGURE 2 : COMPUTER ASSISTANCE IN THE SIMPLE ARTIST-STORY-AUDIENCE STRUCTURE.
.. 19

FIGURE 3 : A SCREEN SHOT OF THE STRUCTURAL ENVIRONMENT WITH SAMPLE STORY

FRAMEWORK .. 21

FIGURE 4 : SCREEN SHOT OF THE REPRESENTATIONAL ENVIRONMENT DISPLAYING A STORY

.. 22

FIGURE 5 : SCREEN SHOT OF WRITER FEEDBACK ENVIRONMENT DISPLAYING A STORY

FEEDBACK ... 23

FIGURE 6 : AGENT SCRIPTING ENVIRONMENT ... 24

FIGURE 7 : SCREEN SHOT OF OF AGENT STORIES IN JAVA, IN ITS NEW FILE STATE............. 34

FIGURE 8 : SCREEN SHOT OF AGENT STORIES AFTER LOADING A STORY............................ 37

FIGURE 9 : SCREEN SHOT OF PRESENTATIONAL ENVIRONMENT PLAYING A VIDEO SEQUENCE

.. 39

FIGURE 10 : MODULE DEPENDENCY DIAGRAM OF ‘AS’ PACKAGE 47

FIGURE 11 : MODULE DEPENDENCY DIAGRAM OF ‘AGENTSTORIES’ PACKAGE.................. 51

FIGURE 12 : AGENT BEHAVIOR FOR TWO SAMPLE NARRATIVE CLASSES............................. 54

8

9

1 Background

1.1 Evolution of Cinema

The craft of storytelling has a long and continuous history, from older forms of

oral narratives and written texts to newer media styles such as movies and television. At

each step along the way, distinct milestones exist at points where new technological

inventions such as the Guttenberg's movable type or motion pictures have jolted the

established model of narration and fostered a branching in the ways that information has

been brought to its audience.

There exists an ever evolving process where a structure or mode of thinking

employed for telling stories has been established in its general form, then the

advancement of technology creates an entirely new medium of expression, wherefore

causing a period of experimentation and contemplation as artists explore this new system

of composition. Janet Murray categorizes the present as "the incunabular days of the

narrative computer" (p29), having once again reached this threshold when our

assumptions of the form and style of storytelling will again be jostled by the powerful

capabilities of the computer.

Cinema is standing exactly at this point right now, and the phrase "Interactive

Cinema" seeks to capture that sense of evolution, when this cinematic medium will be

pushed by the presence and involvement of the computer to forms that was unrealizable

before.

Interactive Cinema reflects the longing of cinema to become something
new, something more complex and personal, as if in conversation with an
audience (http://ic.www.media.mit.edu)

10

Cinema was born from the invention of Edison's Kinetoscope in 1891, and has

endured a series of changes, from the creation of synchronous sound leading to The Jazz

Singer in 1927 to the perfection of the color developing process embodied by

Technicolor in 1932. The "talkie" and the subsequent appearance of color amazed its

audiences and simulated reality to greater extents and increasing the immersive nature of

the movie watching experience.

For a time, the Hollywood system of filming had established most people's

perception of how movies are shot and how they should be shot. Everyone knew what to

expect when they went to the theaters, and what to expect when they stayed home to

watch TV. The way of filming also created an expectation of narrative styles and topics.

The next evolution in cinema occurred when technology reduced the size and weight of

older clumsy cameras, in addition to improving sound recording technology, enabling

filmmakers to follow their action and take the space of narrative out of a studio.

The documentary stepped away from the generally accepted structure of fictional and

personal narrative, establishing more fluidity and freedom in camera work, as well as

taking a film to a heightened level of intimacy with its subject that was never before

possible. This new mode of production created a new narrative space that is not only

more personal and more flexible, but also prefigured the trend of making film more

available to the audience, so that the audience can take a more active role in the

experience of watching as well as making movies.

Accessibility of the narrative experience differs in its three available forms. The

broadcast medium, such as radio, is limited to just one way communication, where the

audience has no way of directly affecting the information being transmitted. The

11

television/VCR format gives an end user access to materials and the power to record and

manipulate what they see through the ease of reediting and transference. This tool

provides the user with the ability to actively take a role in manipulating their own

experience, though others may argue that the television format creates a much more

socially isolated situation because it more people tend to watch TV alone at home, in a

very unparticipatory fashion.

The third medium of storytelling is enabled by the computer and the internet. A

distributed story format over the web increases individual access to information as well

as interactivity with an inherently nonlinear presentation. The structure of the web is

based on keyword association, an idea first articulated in 1945 by Vannevar Bush in his

article "As We May Think". His idea of the Memex machine is based on a system of

associational indexing, which lead to the notion of hypertext, a format with many entry

points and branches but no clear ending, which is quite antithetical of the linear story

format embodied by linear mediums such as books or films.

Computers have also changed the presentational format of multimedia elements.

Audio and video have become malleable domains where they are not only integral

contents of the presentation but also act as expressive, dynamic pieces of information.

They don't necessarily have to exist as part of a coherent linear structure, but can instead

stand alone as customizable elements within a multiform story.

12

1.2 Past Research

One of the first nonlinear projects was the Aspen Movie Map, produced by the

Architecture Machine Group in the late 70's. The streets in the town of Aspen, Colorado,

as well as a few other miscellaneous scenes were filmed and printed onto optical

videodisks. CAVS Videodiscs were an optical storage medium that gave a computational

system nonlinear access to 54000 still frames or 30 minutes of video. A user can navigate

the streets of Aspen using the touch screen or a joystick. The continuous sensation of

navigation was intuitive and immersive, and illustrated a practically seamless

presentation.

In the Interactive Cinema group, the New Orleans Interactive project was the first

large scale documentary in which scenes were addressed and presented in sequence based

on user query and a story model. A documentary shot by Glorianna Davenport and

Richard Leacock, New Orleans: A City in Transition 1982-1986 portrays the evolution of

the city before, during and after 1984 World Exposition. Like Aspen, this complex,

multi-view-point documentary used multiple CAV videodiscs – six in all – as a storage

and access medium. The project began to define computer aided content presentation as

an important research area; for many years the research explored the merits of various

approaches to content annotation; this annotation must provide the machine with

sufficient information about each clip to be able to coherently arrange them as a

narrative. This exploration was compatible with the idea of producing content over time

and by 1995 had matured into the idea of "evolving documentary" as a new content form.

The storytelling system built for New Orleans was able to select and order

sequences based on active key words and simple heuristics (such as select a next

13

sequences from scenes that start with a higher frame number and or disc number). The

system did not attempt to provide a system for selecting shots and creating sequences.

This work, that almost by definition, required an emphasis on a more traditional approach

which used close up, medium and wide shots, as well as variations in POV.

In 1993, Ryan Evans MS94 developed an annotation and filter system called

LogBoy and FilterGirl as part of his thesis work. This set of complementary tools was

created for authoring multivariant stories. LogBoy provides graphical annotation of

content clips, while FilterGirl is a selection algorithm that acts as a filter to create a

multithreaded narrative progression using the graphical annotation provided by LogBoy.

The project illustrates the use of a narrative engine, essentially a software editor, to create

scenes. This system was problematic in that the database needed to be richly populated in

order for the filter mechanism to work reliably.

Gilberte Houbart's 94 masters thesis called "It was a Knowledge War" represented

a movie system that supports multiple points of view about a central topic, specifiable by

the user. In this case, the Gulf War was a case where the main source of information for

journalists was the government itself, so the different journalists interviewed for this

project have interesting perspectives on the same story. This system explores machine

knowledge of media content as well as organization of a content database, but it was not

very responsive to user interaction because it provided only very limited directional

variables for the playback of content.

The next step in evolving documentary construction was taken in Michael

Murtaugh's 96 thesis on Automatist Storytelling Systems. He created two versions called

Contour and Dexter, two similar narrative engines. Contour, written in C++, used a

14

spreading activation approach to selection. By accumulating and degrading weightings

over time, the system picked the next most likely clip. This strategy insured that the next

selection would either be thematically like the last or purposefully different depending on

whether the weightings were being applied as positive or negative weights. Designed in

1995 to run on the WWW, Dexter emulated the links and trajectories that could occur

using a spreading activation approach. Implemented in Java, Dexter could precalculate

the effect that adding any particular clip would have on the graphical user interface and

render the required graphical elements (hence the name “evolving documentary”).

Boston: Renewed Vistas, a content application, informed the early designs. In the

video material, we discover multifaceted communities and perspectives as people around

the Boston cope with the enormous Big Dig project that is rearranging the layout of the

city. Each clip in the database is associated with metadata of possibly many keywords.

Many different clips share the same keywords and a keyword is associated with multiple

clips. The decentralized character of the Spreading Activation Network allows the system

to assign each clip a certain activation energy, and either raises or decreases that energy

level depending on the user's viewing history. When one clip is selected to play, all other

clips check if they are related to the currently activated clip, and adjust their energy level

depending on their relation to that clip. The higher an activation energy is, the more

likely a clip will be the next selected for playout.

In this project as it runs in Contour, the state of the visual representation informs

the user as it reflects the database. Each clip is sized and placed according to its

activation level, with more related clips receiving more prominent display. The interface

consists of a collage of frames, each representing an available clip, and also an outer

15

border consisting of all available keywords. The user can select either a video or up to

multiple keywords as parameters for the engine. Not only does this system provide a

continuity of story and a visually fluid presentation, it also allows for increased audience

participation in the story, allowing the audience to join in the creation of what they are

viewing and not remain mere receivers of information.

The web based incarnation of this system, Dexter, was used to create the applet

and webpage "Jerome B. Wiesner: A Random Walk through the 20th Century". Though

using the same engine, this version was less visually dynamic because it employed a grid-

like Java moviemap that only possessed four possible activation states, and a separate

window for content presentation, whereas Boston integrated the content into their visual

interface. In the first attempt to widely distribute this form of narrative on the web, many

tradeoffs were made to facilitate content delivery but compromised its original design.

As the notion of an evolving documentary met the abilities of the computer and

reached a large distributed audience space, MS96 student Lee Morgenroth created the

"Lurker" system which can be categorized as a "thinkie". His assumption of audience

interaction within a large information space was that they needed to be given headspace

to adjust to this new interactive environment. As a result, the main point of online

interaction shifts from merely navigating a gamespace to establishing a network or

cooperation among its participants in which they establish relationships and form a

community to work together to solve presented to the participants. This system changed

they perception of storytelling in a widely participatory environment, by trying to fully

engage an active segment of the audience.

16

2 Kevin Brooks’ Agent Stories

2.1 Intentions

In his ’99 Ph.D. thesis, Kevin Brooks detailed a number of characteristics which

he viewed were feasible given our present ability to combine computation and media

presentations in the context of interactive environments such as the internet or interactive

TV. He saw that the combination of these new possibilities created an imminent form of

narrative structure that he then dubbed “metalinear narratives”. Even given modern

interactive sources of entertainment such as CD-ROM stories such as “Myst” or

videogames, he felt that they were potentially promising, but still remained relatively

static because all plot paths and branching nodes were fixed or limited by methods such

as branching algorithms and knowledge based AI. Those new forms of interactive

entertainment still lacked the malleable and audience-customizable structures provided

by oral storytelling traditions and the theater, where the author or actors have direct,

instant feedback from the audience and may modify the story presentation on the spot.

Figure 1 : Simple artist-story-audience structure, with feedback (Brooks 61)

17

In their place, Brooks proposed the “metalinear” form, consisting of a “collection

of different linear stories from different points of view, with the aid of a story engine

which sequences the story pieces” (Brooks 19). This new structure resides more

satisfactorily in a more globally connected environment, where the multiple contexts

exist simultaneously in overlapping digital spaces. Because linear stories typically cut out

different points of view to preserve coherence of intention and theme, usually for a

specific audience and in a fixed format, metalinear stories strive to break the old modes

of thinking and include multiple first person points of view and granules of story stored

in a web-like interconnected structure for increased variability.

 Because this new form of narrative structure is different from those employed in

more traditional storytelling mediums, no established authoring method or environment

exists either. Ideally, the system would suggest interactivity to multilinear stories. To

facilitate ease of use and overall comprehension, it would integrate both thinking space

and writing space in the same area. Metalinear stories themselves delegate the

determinism of narrative sequence to both the author and the audience characteristics,

which means that the lines between creation and presentation are no longer clearly

defined. In that sense, the authoring environment reflects those sensibilities as a constant

reminder to the writers in their process.

2.2 The System

2.2.1 Theory

As part of the research on metalinear stories, Brooks created an authoring tool

called Agent Stories. He followed the precept that a tool is “only as intelligent as the user

is with the tool in their hands. Therefore, the tool’s empowerment of the user is of great

18

importance” (Brooks 92). To create an adaptable tool infused with understanding of the

writer’s intentions, the engine should be able to knowledgeably weave together an array

of character accounts and viewpoints from the manner with which the writer linked story

granules.

As part of Brooks’ thesis argument states, old habits of story writing are hard to

break. Authors who have been accustomed to old habits of creating linear narratives

would find it difficult to conceive of vibrant and coherent plots which sufficiently fit into

multilinear frameworks. Given the belief that a story can contain multiple parallel

streams of action, multiple points of view, many relations between the story elements,

and not always the same outcome, a storyteller needs to juggle many variables in mind,

and also try to appropriate the structure and content of the narrative to a specific

audience. This significant task can become unmanageable even for writers accustomed to

this environment. The writer has become an architect in need of a sophisticated tool with

which she can comfortably navigate through a potential maze of nodes and connections.

As a logical result, the computer would be able to provide assistance to the writer

in their creative process by meaningfully keeping track of story elements and also giving

the author creative feedback, as well as keeping track of the author’s intentions so as to

better structure and personalize responses to and presentational formats for the author’s

preferences. The computer can fill the role of an intelligent tool that is dynamically

adaptive and highly personalizable to the user.

19

Figure 2 : Computer Assistance in the simple artist-story-audience structure. (Brooks 63)

Agent Stories was created in the wake of this new predicament. As the writer’s

task multiplies in difficulty and complexity, the writer’s tool correspondingly increases in

intelligence and autonomy in response to this need. Agent Stories is a software tool

featuring multiple environments that aid in the various facets of the story writing process.

It not only records the contents of story elements, but also stores the states and

characteristics of those elements, as well as writer’s intentions for organizing them along

a certain framework structure. Given a set of clips and a structure of arrangement, a story

engine will be able to select a final linear version of the story with the help of a story

agent. The writer can specify desired characteristics to all parts of the system, and as a

result can variably control and customize the results.

Software agents are integral in driving the story engine to create variable and

personalizable story suggestions. Agent behaviors can be categorized into two main

approaches, the more traditional knowledge-based rules of action, and behavior-based

rules of action, which have been well contrasted by professor Pattie Maes of the Media

20

Lab. When applied to the context of narrative structure, a knowledge-based approach

essentially is not concerned with adapting over time to developmental aspects of a

particular problem, but instead can become very specialized in solving one problem at a

time, given that the problem remains unchanged. On the other hand, a behavior-based

approach espouses integration of multiple rules of action, and such an agent would be

more situated in their environment, and thus can more effectively detect the behaviors of

the system and not just its knowledge.

Metalinear narrative research employs BBAI through the use of software
agents. The software agents are less brittle and more adaptive to a
dynamic narrative representation environment than a KBAI approach
would be. Using software agents, story domains can grow or change,
while the agent remains the same. (Brooks 67)

According to the principles of these software agents, the story engine of Agent Stories

resides as an integral part of the whole system, and adapts itself to different story contents

and structures.

Agent Stories’ narrative engine is never explicitly represented in a particular

environment. Even though the roles of engine and agent are inextricably linked, they

nevertheless reside in different spaces within the system. Agents are visible entities, and

have been accorded their own scripting environment. Engines will only run when called,

and even then within the background. Brooks elaborates the notion of a story engine’s

role and characteristics.

[T]he term story engine is used to describe a set of software algorithms
designed to make decisions regarding how a computer-based story should
proceed. That is, the story engine decides what’s next in the story,
embodying some of a human author’s reasoning for doing the same task.
Story engines are construction engines, deciding the sequence of each
small detail, major event, and opposing or supporting position of the story.
(72)

21

2.2.2 Structure

Agent Stories contains five environments presented on separate, exclusively

visible screens, each of which represents a phase in the authoring process. The first is the

Structural Environment, in which the structure of the narrative is sequenced using

building blocks. These individual components are primitives called narrative classes, and

there are seven : {Speaker Introduction, Character Introduction, Conflict, Negotiation,

Diversion, Resolution, Ending}. The resulting sequence is called the Narrative

Framework. The framework comprises the essential backbone of our story, and multiple

stories may be created from a single collection of story elements by laying them in

different order onto the framework.

Figure 3 : A screen shot of the Structural Environment with sample story framework (Brooks 102)

22

Environment number two is the Representational Environment. Story granules,

otherwise known as story clips, are contained here along with relationships between the

clips. Each story clip, asides from being labeled with a narrative class, is also given a

name, an associated point of view, text content, and a type. Clip relationships strongly

affect the underlying shape of a story, which forms an interconnected web. These

associations take on the form of links : {Supporting, Opposing, Conflict-Resolution,

Factual Precede, Causal Precede, Must Include}. A web of linkages shapes the

personality and potential of the linear stories to be constructed.

Figure 4 : Screen shot of the Representational Environment displaying a story (Brooks 109)

A Writer Feedback Environment provides the writer with a means for clearly

understanding the state of the story and its structures of representation by displaying a

sketchy outline for a linear story. A sketchy outline is the simplest story possible, given a

23

story structure and a style of reasoning about the construction. In the WFE, a story agent

combines the story framework of the Structural Environment with the story

representation of the Representational Environment, and outputs a linear story with

explanations of why each particular clip was chosen. This form of feedback gives the

writer insight into how appropriate parts of the system are working together. Given that

information, she can then further modify different the components of the system as she

sees fit, to further experiment with the story or simply to fine tune smaller settings.

Figure 5 : Screen shot of Writer Feedback Environment displaying a story feedback. (Brooks 122)

Even though the previous version of Agent Stories was not yet implemented with

video or audio media displaying capabilities, a Presentational Environment was

nonetheless created with that crucial functionality in mind. Since the Agent Stories tool

was originally envisioned to fulfill a need in the context of media-rich, interactive

24

settings such as the internet and interactive TV, multimedia content was even envisioned

as presentable in a dynamic, simultaneously active display area. Due to the limitations on

time, those goals were put oh hold for later versions to implement.

The fifth and one of the most important environments is the Agent Scripting

Environment, in which the writer can build behaviors for software agents, the entities

which will run the narrative engine and output a linear story. The principles behind

scripting of story agents are the most complex algorithms of the system because the

behaviors of different agents drive the narrative engine with their particular settings, and

the resulting story and clip selection will follow the guidelines of the narrative framework

and be chosen by the narrative engine.

Figure 6 : Agent Scripting Environment. Each smaller box represents a method for choosing a clip
for the primitive type box it belongs to. (Brooks 139)

A writer is given the option of determining agents’ internal parameters and

therefore can give different agents their own behavior rules.

25

Story agents select and sequence the story pieces, according to (a) a user
specified abstract narrative structure, (b) the relationships between the
story pieces, and (c) the unique parameter values of the story agents.
(Brooks, 26)

Each agent can be accorded one main behavioral action and many more secondary

actions for each abstract narrative class. Those rules would determine the story engine’s

actions when selecting story clips to fit into the narrative framework. The writer can also

decide to create multiple agents to create one or more stories of different styles. Through

control of these agent parameters, a writer can exert variable levels of control on the

actions of the story engine.

For example, Brooks’ system came included with five predefined story agents.

The first agent is Bob, “a happy story agent, who doesn’t like a lot of conflict between

characters. He’ll avoid using characters who don’t play well with others” (124). This

description means that when Bob is given the task of choosing clips, he’ll give preference

to those not in conflict with his Main POV. He’ll avoid Oppositional links, where clips

from a certain point of view will disagree with the situation described by the main

character. “This is not to say that Bob avoids conflicts, both in the general sense and the

Agent Stories sense. It is just that Bob would construct stories more of the man vs. nature

type rather than the man vs. man type” (124).

When constructing a story structure and associated agents, the writer needs to

keep in mind how the two components work together, so as to avoid creating a disparity

between the clip choices and their selection method. A story structure that does not cater

to the agent’s preferences may result in very few selected clips, or stories which contain

selections from only a narrow range of materials available to the agent.

26

The Agent Stories system combines the tasks of clip annotation and structural

creation in the user manipulable environments. The computer also has a task in filtering

and choosing content through work of a story engine, so as to dynamically create

multivariant stories as well as provide meaningful feedback to the author, with the

intention of further stimulating the author's creative process by presenting new story

possibilities which may not have been initially evident.

Brooks further designed the user interface with the intention of creating a visually

stimulating presentation that would be intuitive and logical to use, as well as inspire

creativity, because the role of a tool should be to help the user in every possible aspect of

its functions. With the evolution of Agent Stories into the Java language and Windows

platform, the system’s engine capabilities were only somewhat compromised, but to a

large extent, its user interface has faced a complete overhaul. As with the challenges of

revising any large system, the new version of Agent Stories has been a large compromise

in creating extensible support for new features while supporting original values.

27

3 Agent Stories for Java and WWW

3.1 Previous work

Reconstruction of Agent Stories in Java was begun immediately after the

departure of Kevin Brooks. With the intention of enabling this tool to be distributed to a

larger audience, Agent Stories was decided to be rebuilt in Java, a platform independent

language in which compiled executables can be ported between different platforms. Java

applets are also accessible over the internet, so an applet version of Agent Stories would

potentially be able to be accessed from anywhere in the world. The future of Agent

Stories is to achieve all functionalities originally envisioned by Brooks, as well as be able

to reside in a community space as a tool for collaborative story writing and idea sharing.

Anthony Young-Garner implemented the first Java version of Agent Stories. As a

UROP under Brooks, he had already built much of the original system in mTropolis, a

graphical programming language and environment for the Macintosh. The Java version

was originally written in a Netscape IFC, which employed different methods and

packages and classes.

The subsequent version, written by Francisco Tanudjaja as his AUP project, was

updated to Sun’s Java v1.2 with Swing, and documented for reusability. Swing has been

integrated into the Java API for ease of use in building generic user interface components

such as lists and tables, and also provide pluggable “look & feel” features. The program

was developed on the UNIX platform of MIT’s Athena network and didn’t completely

run on windows. But it was successful in bringing the Agent Stories system another step

closer to universal accessibility and easy of use.

28

3.2 Further developments

3.2.1 Immediate goals

At this stage of construction, many immediate possibilities were present for the

next implementation. Java v1.3 has been released and has begun to be widely distributed

and employed. For example, MIT’s Athena system and many browsers are now equipped

to handle the new version by default. The update to v1.3 has also introduced

compatibility errors because methods and principles of action have been changed.

The state of the original narrative engine was far more advanced and complex

than the existing version in Java. Particularly, Agent Stories in Java was not able to

express neither all types of link representation nor all the distinctions within the narrative

framework. Each story representation was also not modularized, meaning that the writer

was not able to interchange multiple agents for use with the same story setting.

Many features that the original system had intended to provide but, for the sake of

time constraints, did not, were now also imminently possible in Java. The QuickTime for

Java package provided by Apple can be seamlessly imported into Sun’s Java

development environment, and can therefore provide video and audio import and

playback capabilities. The Presentational Environment can now be fully realized because

the technology for manipulating video is present and easy to use.

Agent Stories in its applet form was also existent at this point in a very basic

format. It runs in Athena and loads in a text file. Many difficult implementation issues,

such as the possible need for a Java servlet or a dedicated server to handle loading and

saving of user settings and videos, were not yet addressed. Yet given the framework on a

functioning applet, the system can now be extended to include those features.

29

3.2.2 Long term goals

A version of Agent Stories that satisfied all its immediate goals would be a fully

functional and portable entity, ready for extensive usage as a writing tool. Having a well

designed and smoothly functioning system in place will ease the transition into further

expansions and revisions. Even unforeseen additions will be easily implemented as long

as the system is built with good design concepts in mind.

Multiple research projects currently in progress in the Interactive Cinema Group

explore notions of community and collaboration for story telling when they exist in

remotely accessible, online meeting spaces. The Shareables architecture project provides

the extensible architecture backend to support multiple personalizable applications that

reside in public digital spaces. Since the Agent Stories system has progressed from a

personal application dedicated to running on one computer to an applet available for

access over the internet, further extension of this progression towards remote usage

would be to integrate it with the Shareables architecture and possibly enable it to become

a multi-user collaborative tool.

3.3 User Interface

As demonstrated by figures three through six, the logical placement, graphical

layout, and even color of the original Agent Stories was extensively designed for

efficiency, comprehension and aesthetics. Color selection for narrative relations were

finalized after discussions with a color consultant, who chose color combinations based

on their saturation, hue, warmth, and even their relative positions in color families.

30

Component shapes were also designed to be distinctive, yet fit in logically with its

environment and related representations.

The incredible amount of attention devoted to details of interface graphics created

a well organized set of display environments that were not only aesthetically pleasing and

fun to use by themselves, but were also thematically structured and well integrated with

each other. The fade-to-black transition between environments, though not designed for

speed, was immediately intuitive to anyone who’s ever watched a movie. The most

important quality to be credited to this interface is that it makes learning the tool such an

engaging experience that the user would be prompted to play and experiment even when

she does not have the explicit goal of writing a story.

As a tradeoff for beautiful user design, each individual environment was given

exclusive screen property. The amount of allotted space allows added liberty in creating

clear and understandable interfaces with room for additional creativity and increased

complexity within each environment. However, switching between two or more

environments enforces a delay in transitional time, which disrupts the writer’s thought

process, as well as being a minor annoyance for users familiar with quick-response

systems. On top of that, not being able to gain an overview of the entire story state can

become a considerable problem as a story grows in size. One of the main reasons for the

creation of Agent Stories was the hypothesis that as story size and interconnectedness

expand, maintaining coherency in the writer’s mind will also increase in difficulty.

Brooks has created an excellent compositional structure, replete with software agents, to

counter this difficulty. Yet due to the tradeoffs made in user interface design, elements of

the scalability obstacle remain unresolved.

31

Since the Java version of Agent Stories was written in Swing, a package which

provides “pluggable look & feel”, the interface components were implemented in

prepackaged Swing structures such as lists and tables, and their shapes and colors

inevitably became conformed to the default look & feel of the Java API. Partially to

resolve the environment overlay problem of the old version, and partially to increase easy

and speed of implementation, the new interface was also designed to partition its screen

space so that all five environments are now simultaneously visible.

As the old interface was lost in the revision, new problems arose in effective user

interaction with the application, as well as the role of interface design in promoting user

creativity and understanding of the framework and state representations. Since every

extension to the program involved an evaluation of its role in retaining the integrity of the

interface, comprehension of user interface became a uniting concern throughout the

process of development. I will therefore introduce some theories of effective user

interface design and concerns of interface tradeoffs in Agent Stories because they provide

comprehensive and revealing looks at the integration and development issues

encountered.

3.3.1 Theory of effective interface design

Due to limitations of implementing custom graphical interfaces in Java as well as

existing time constraints, the revised Java version was given a brand new interface that

did not reflect the same sensibilities and dedication to visual stimulation. As a result, any

change to this interface needs to strongly reflect solid interface design principles for an

information intensive structure.

32

First and foremost, we consider the statistics of our user base. Agent Stories as a

story-writing tool will not be for the casual user because it involves a high initial learning

curve. The assumption that most users would be computer literate and familiar with the

basic ideas of narrative seems highly probable. Franzke noted that users who have used a

variety of applications before encountering a new one “are therefore more likely to

attempt learning new functionality by exploration rather than by reading manuals and

tutorials” (422). He further insists that even for casual users, the interface should provide

ample cues for usage. This revelation suggests that an interface would serve both expert

and novice writers by providing excellent explorability and learnability.

Prevailing beliefs dictate that a graphical user interface needs to do more than just

look good. For the purpose of explorability, layout of components should intuitively

suggest the mode of interaction. Such information can be conveyed through natural and

concise language usage and logical placement of components so the user doesn’t spend

much time searching for every desired object. Franzke demonstrated through various

experiments that user searches are guided by label-goal matches. In other words, if an

element of the interface matches the expected target action, it will be easily differentiable

from other elements and quickly recognized.

Further studies by Terwilliger and Polson reinforce these findings by categorizing

user navigation into two groups – instruction following and task elaboration. In

instruction following, users construct goals from representation of instructions, sustaining

the principle that interface and instruction elements be given the same terms. The method

of search called task elaboration illustrates that users also retain pre-existing

representations in their minds, in which case such an interface would function more

33

efficiently if it matched existing expectations instead of given instructions. Both studies

dictate that an interface containing logical placements and labels would be simple to learn

and interact with, and a user can retain a good overall comprehension of usage through

basic visual cues.

For the purposes of usability, an intuitive interfaces should also convey meaning

or structure of concepts through information grouping or an easily navigable information

hierarchy. An interface that reveals the logistics of underlying system structures will also

increase user comprehension and therefore promote greater flexibility and aptitude of

usage. To this extent, research has continued in issues of navigating information

structures, especially faced with problems as these structures increase in size and

complexity but the amount of interaction is still limited by screen space and time allotted.

Furnas stated that assuming elements are organized in logical structures, these same

elements should be placed next to their logical neighbors in information flow as well as

workflow.

Especially in an interface where a large amount of information is conveyed, these

principles of design are essential to ensure usability and comprehension. The current

Agent Stories system is a large information structure where the current interface does not

meet the design principles with which it was initially conceptualized. In the attempt for

the new interface to satisfactorily meet original expectations, the edicts of learnability,

explorability, and usability need to be thoughtfully integrated while acknowledging

system limitations.

34

3.3.2 Interface overview

Upon first look at the new Agent Stories interface, major differences in look &

feel and screen composition are immediately apparent. The default look & feel provided

by Swing components are very similar to the Windows environment. Layout of system

environments has also been compromised to fit into one encompassing screen space.

Each environment fills a portion of the screen as they are always constantly visible. Due

to the homogeneity of colors, shapes and fonts, the difficulties previously discussed for

an information structure are clearly illustrated. The following figure displays Agent

Stories in its current state.

Figure 7 : Screen shot of Agent Stories in Java, in its new file state

35

On the left column, the Structural Environment displays a top window labeled

“Choose From:” for the list of possible narrative classes from which the user can select.

The lower window labeled “Your Selection:” is intended to house the user-selected

narrative framework. Possible action functions are each illustrated by a clearly marked

button that describes its intended purpose.

A table structure in the top center portion of the screen contains all functionalities

of the Representational Environment. Each individual clip is now contained by a row in

the table, and metadata associated with each clip now reside in distinct columns. As in

the old version, each clip is associated with a principal character, the character/clip type

(main, minor, dramatic, sonic), a title, and its narrative class. The video clip column

contains the location of an associated piece of video. This functionality is only present in

the most recent version. The “Links” column is the only one that doesn’t represent a field

in the data structure. It was added on later in consideration of interface usability, which

will be demonstrated later. As with the Structural Environment, possible actions are all

represented by buttons, which exist in an array at the center of our screen.

In the lower center portion we see a tabbed window housing two overlapping

panels labeled “text” and “video”. The text window is a version of the Writer Feedback

Environment, which displays text associated with each clip or a resulting story sequence

generated by the narrative engine. As previously stated, the narrative engine is no longer

able to give feedback concerning the choice of clip selection. The video window is able

to display pieces of video associated with each clip, as well as generate a video sequence

from an engine-selected story. As video capabilities have finally been incorporated into

36

Agent Stories, the Presentational Environment can in turn develop into a functioning and

integral component of our system.

Finally, the Agent Scripting Environment resides in the right most column of our

screen. Similar to the Structural Environment, the top window contains possibles

selections which the user can make. Finalized selections will appear in the lower window

as a list, and all control actions are represented by an individual button at the very bottom

of the column.

3.3.3 Design principles in practice

In keeping with the principles of learnability, explorability, and usability, the

color coordination and component layout within each environment, and the relative

positioning of the environments to each other and within the whole system all reflect an

attempt to accommodate the user experience. This interface was created with an eye

towards retaining the interface integrity of the original application, as well as attempting

to further improve upon noticeable difficulties existant. To better illustrate the

experience, figure 8 typifies the state of our system in the middle of a construction

process. At this moment, the writer has input a significant amount of story clips and

created a series of linkages between those clips. The narrative framework and story agent

have also been extensively composited. This figure demonstrates the system capabilities

when the user has gone beyond casual use or experimentation.

37

Figure 8 : Screen shot of Agent Stories after loading a story

Now that each environment is shown to be in active state, their full functionalities

are better illustrated. The Structural Environment contains a long narrative framework

that extends beyond the boundaries of our fixed-size window, where the choice was made

to encapsulate this list in a scrollable panel. A potential tradeoff was to allow individual

windows to resize as the size of its contents increase. However, the final decision was

made in regards to usability, because if windows would resize and shift of their own

accord depending on the amount of information it contains, the user will not be able to

work with a constant configuration and achieve a comfort with the environment. Another

frequent problem was confusion in differentiating between the two selection windows. As

38

a response, I slightly darkened the “From” window so as to lead the eye to the list of user

selected classes.

The Representational Environment is also housed within a scrollable container for

similar reasons. For the purpose of increasing usability as well as learnability, the

“Links” column was added into the table as simple reflection of state, not data storage.

As the user clicks on different clips in the table, color bars appear in the links column,

each of which represents a link related to the selected clip. For example, if clip A and clip

B are linked together by a supporting link, then whenever the user selects clip A, a color

bar representing supportive links will appear next to clip B. In view of the original

Representational Environment, where the overview presents a set of clips as well as the

links that connect them, the “Links” column was added in as a substitute for the

representation of narrative links. As noted by Barbara Barry during a session of feedback,

the user can easily learn to gain an overall sense of the amount of and types of links

present in the system. This ability is especially useful in the process of story writing,

where the writer frequently scans the content in order to gain a sense of what exists and

what more will be needed in the story.

Since the “text” panel displays output of a run of the narrative engine, it is the

equivalent of the Writer Feedback Environment. At the same time, due to its proximity to

the Representational Environment and the fact that this panel can easily display text

associated with a clip, it also serves as the display for the Representational Environment.

Even though this bifurcation of responsibilities does not follow the guidelines of the

original version of Agent Stories, it represents a very intuitive combination of

functionalities from the point of view of the user. All three notable goals of our interface

39

design are satisfied since within a limited viewing area, we have one text display for all

actions under this category. This fact is easy to learn and quickly memorizable. Since

displaying text is such a common task in this system, even users who are learning through

exploration will quickly discover this feature.

Figure 9 : Screen shot of Presentational Environment playing a video sequence

The current video display window has begun to implement selections of

characteristics originally envisioned for the Presentational Environment. In striving for

universality, all forms of drawable content supported by the QuickTime for Java package

are also playable in this environment. Those supported formats include video files, such

as QuickTime and AVI format, audio files, and even text files, for which the text will be

displayed sequentially in a small display area. Currently, the drawable clips are staggered

in position on the canvas, with the first one in the top left-hand corner and each

subsequent clip placed in a lower position. As the sequence of clips play through, the

40

current clip will be brought to the foreground so as to be completely viewable.

Depending on the preferences, each sequence can play once or loop many times.

Looking ahead, many possible features can be added to this environment, which I

feel is the most extensible in the system. Video playback does not need to feature static

placement and strictly sequential ordering. Instead, a sequence can take full advantage of

the computational abilities of the story engine and agents, and display a dynamically

configurable layout that applies the conditions of engine decision and agent behavior into

determining how a series of video and audio will play out. A most interesting topic of

research would be to explore how the personality of a story agent will affect the editing

of video sequences, particularly in the pacing, layout, movement and interaction between

clips. This study is very possibly multidisciplinary and may involve tapping into the

fields of AI as well as film theory.

The fifth and final environment, the Agent Scripting Environment, resides in the

right most column. To parallel the principles exercised in the Structural Environment, the

content windows remain on top, while action buttons are grouped on the bottom. Of the

two selection windows, the top one contains the possible choices for agent behavior for

which the user can configure, then the bottom one contains a list of selections that have

been made. To increase the ease of learnability, parallel principles of design was

employed for all possible environments. Even for the Representational Environment, all

action buttons are placed below the component window.

Overall placement of each environment within the whole system was designed in

an effort to maximize learnability and usability. Explicit decisions were made to overlap

the text and video displays because logically, since the text was intended to serve as

41

placeholders for the user to eventually shoot appropriate video clips, the displaying of

one or the other can be mutually exclusive.

The order in which environment components were sequenced parallels the choice

made by Kevin Brooks in his original tabbed layout. In relative proportion however, the

Representational Environment, due to its large collection of dense informational

structures and the fact that most of the time spent by the user will be in creating clip

content, occupies the most space and resides in the center of the screen.

The decision that all environments would be visible at the same time has created

the need for efficient space usage and interface design for usability. The tradeoff was

made between user awareness of all states of the story and space constraints that limit the

complexity of graphical design and amount of viewable information. Through research of

interface design and feedback sessions with other graduate students, I’ve made various

adjustments and additions in color, labeling, and component layout that hopefully has

resulted in a much more efficient and aesthetic interface.

3.4 Illustrations of usage

In parallel with the development of various features of the application, I have also

examined the feel and logistics of Agent Stories by entering narrative content into the

system and testing its responses given different frameworks and agents. Various graduate

students including myself attended a Narrative Workshop this past November, 2000 at

the MLE in Dublin, which had been organized by Glorianna Davenport of Interactive

Cinema. As an exploration of the possibility of creating multiple character-centric linear

42

stories, and seeing how these characters, who are in the same city yet do not know each

other, may cross paths and interact, or exert secondary influences in each others’ lives.

The content generated at that brainstorming session revolves around four different

characters, named Kate, Nat, Kaye and Nicholas. At the same time this morning, each

one of them reaches a major crossroad in their lives, and faces a command decision. In

the course of one day, they will pass through many of the same locations of this city and

go about resolving their lives in crisis, sometimes meeting each other and being

influenced. Each story clip is centered on one character at a certain time and location.

When entered into the Agent Stories system and structured with various narrative links,

these 22 individual events form a story space that evenly spans a small time and space.

The structure of these parallel lives would fit very well into a soap opera-like

drama, so I frequently tested the system with agents that prefer to see a lot of alternate

characters’ point of views. Multiple runs of the system tended to generate story lines not

radically different from one another, which reinforced the stability of story agents’

selection algorithm. However, because agent knowledge is limited to story structure but

not clip content, some sequences still lack a certain coherency. For example,

Nicolas: Goes to hotel lobby to assemble revolutionary new shopping cart
design. Builds it, locks herself to it, and heads off to test it.
Kate: Meets likely lad and flirts outrageously. Why not? her husband
doesn't care - today is the beginning of the rest of her life after all...
Kaye: Wakes up in hotel bed alone. Lover gone with her painting, money,
credit cards and suitcase.
Kaye: Goes to bar for a quiet drink to gather thoughts.
Nicolas: Goes to hospital for check up - sits in the waiting room for hours.
Kaye: Goes down to hotel lobby to talk to concierge about what has
happened. sets off for embassy.
Nat: Wakes up with headache.
Kate: Sitting in the bar getting smashed with bloke - who cares?!
Nicolas: Emerges from hospital and is transfixed by wonderful singing.
transported away from her troubles

43

This sequence gives a good illustration of the nonlinear preferences of story

agents. Yet looking at the interaction between Kate and Nat, the audience would find it

difficult to gain a solid comprehension of their story cohesion like the writer may have

intended. Since these two characters meet each other only later in the afternoon and go

get smashed in a bar together later at night, the agent was not constrained to similarly

parallel their actions in the beginning of the day. As a result, Kate flirts with Nat on the

second sequence, but Nat does not wake up in the morning with a headache until near the

end of the story, right before he’s getting roaringly drunk at a bar. Such a temporal

sequencing may confuse the audience as to whether Nat woke up with a hangover this

morning, or the next morning after carousing with Kate.

For better contrasting of the two characters, the agent should be able to exert

greater foresight and better analysis of the story content. For example, one way to

increase agent flexibility is to give them the ability to do a two passes on a story

sequence. The first pass involves selecting clips to fit into the framework, and at the

second pass the agent may either reorder clips or selectively rerun its engine on

subsections. One problem that these behaviors may alleviate is the fact that agents often

select a certain clip to fit a narrative framework, then be constrained by ‘Precedes’ links

further down the line. Occasionally, a generated sequence may be very short because the

agent begins by chosing a clip very near the end of the story, and can no longer access

any related materials that had factually or causally preceded this initial clip.

Another caveat for the user to remember is that even though the Agent Stories

systems is designed to initiate multilinear thinking, its linear narrative framework and the

text implemented Presentational Environment still allows for linear sequencing. Agents

44

can reorder story clips so as to suggest possibilities for multilinearity in the story’s final

incarnation, but a sequence of chosen clips, stringed together in accordance with the

narrative framework, will still be presented one after the other. This result will be

somewhat resolved when video capabilities has been fully integrated into the

Presentational Environment. A generous display area will allow for multimedia versions

of the story with simultaneous streams of video and audio material, which more closely

resembles the original purpose of the system. A writer who is using this tool to generate

ideas for a nonconventional mode of presentation, for example interactive story-telling

over the internet or a physical art installation, need to regard generated story sequences

with the reservation that a story will still need to fit its medium of delivery, not just

satisfy the constraint of being ‘non-’ or ‘multi-’ linear.

Through the process of experimentation, I realized that our system functions best

when it’s fully populated. Given a set of story clips, and a proper narrative framework,

the agent would only create a significant story if the story representation contains

sufficient amount of links to satisfy the agent behaviors. On the other hand, a significant

amount of narrative links would not necessarily result in a complex story sequence if the

agent behaviors can not conform the given clip types to our narrative framework. This

requirement creates a time barrier from generating the first batch of ideas to actually

producing a likely story sequence. The starting user will experience difficulties not only

in initially learning the system, but in generating enough material to fit the structure of

system so that it can fully demonstrate its abilities to logically generate nonlinear

narratives. If a user tries to run an agent on a small amount of clips, the resulting

sequence may be even shorter and therefore confusing and unengaging.

45

It is therefore not very likely to play with and generate a simple tale in our

system. For example, many children’s books are too short and logically structured to

allow much multilinear manipulation. Even looking at innovative children’s books such

as the Dr. Seuss series, nonsensical words and characters, intended to break a child’s

conventional view of their world, are still sequenced carefully to provide a progression of

ideas and teach the child about logic and cause and effect. These properties are partially

the constraints of a linearly sequenced book format, and will be questioned and

manipulated when stories are ported to interactive mediums that inspire a child’s

participation. Yet the basic constructs of a story form will remain, if the purpose of that

form is to be educative in a logically sequential way.

The original Agent Stories was created by Kevin Brooks, for an audience of story

writers not too unlike himself to create stories of a certain depth and complexity. As a

result, this tool may not be the most suitable for initial writers who either have not had

enough experience in constructing a large storyscape or writers who have in mind a

certain story format that’s not easily implementable by this system. However, Agent

Stories is a flexible tool that still warrants experimentation by all writers, if not for

serious usage in their work, but merely as a way of suggesting different methods of

sequencing and editing to motivate new ways of thinking for the digital story-telling

realm.

46

4 Technical specifications

4.1 Overview of subsystems

The code structure of Agent Stories has been organized so that the ‘as’ package

contains code dealing with interface and connectivity functions, while the ‘agentstories’

package contains code that describes the underlying engine and agent behaviors. The ‘as’

package also the task of saving and loading a user’s story configuration, whether it be to

the local system or remotely through a dedicated server.

When the system is running, all information collected through the interface will

be stored and handled by classes in ‘as’. Once the user decides to run the engine, those

pieces of information will be distributed to the engine, which parses all settings and then

runs the selection algorithm of its particular agent. A resulting narrative is now stored in

the system, and can be displayed as both a text and a video sequence.

4.2 Details of subsystems

The system diagrams provided to illustrate overviews of structural and procedural

dependencies are not strict dependency diagrams. I felt that due to the size the program, a

completely comprehensive MDD would be too complex to be of any help in

understanding the behaviors of the system. One of the greatest difficulties that I

encountered in implementing this project was the amount of time that was required to

gain an understanding of the system. Due to the lack of clear and concise documentation,

learning the details of the code occupied a significant portion of the project timeline.

47

In the following description of each subsystem, I will provide explanations of the

subsystems’ structural and procedural organization, as well as notable peculiarities in the

methods of implementation and the integration of Java itself.

4.2.1 The ‘as’ package

Figure 10 : Module Dependency Diagram of ‘as’ package

'agentstories' package

ASApplet

ASMain

ASFrame

FileIO

VideoArea

ASTable

Controller

MultiServer

TableSorter ASTableModel

ConnectionTable TableHasher

UnmodifiableIterator

TableMap

TextPresenter

Interchangeable
pieces of the

interface - Applet or
Application

Legend

class

static method

interface

strong
dependency

subclass
relationship

48

All essential and peripheral interface functionalities are contained in this class

package. Because applications running on the local computer does not experience the

same security restrictions as an applet, the system is fully implemented as an application,

runnable from the file ASMain.java. An interchangeable applet interface has also been

included in the package, and all features not related to the access of files function exactly

the same way as in the application.

Applets in Java are not granted the permission to access the local hard drive, only

publicly available files located at URL addresses are viewable. Therefore, to enable

loading and saving, the ASApplet layer has been created to communicate all access

requests from the MultiServer. When implementing the remote calls from applet to

server, a choice was available as to at which stage of the request should static functions

be called from the FileIO class, and how should the process be delegated between the

applet and server.

One available option was for the applet to work very similarly to the application,

and call functions of FileIO when a request is processed to load or save a file. FileIO

would then pass all request parameters to the server and send responses back to the

applet, therefore handling all parsing of information from server and preserving design

uniformity of the interchangeable interface components.

The second and implemented option called for the applet to handle all

communications with the server directly, which requires the server to process all file

parameters and call FileIO. With this technique, establishment of contact with a server is

confirmed at the initiation of the applet, and not after a request has been sent to FileIO.

As a tradeoff for modular design, this method preserved the format and function of

49

FileIO, as well as its theoretical location as residing on the local drive. In addition, one

principle of programming servers deem that all significant amounts of processes should

be handled the server side and not by the client, due to variability in client platforms and

processing power. In accords with that technique, only filenames and Vectors containing

story settings are passed between applet and server, thus allowing network

communication early in a request process. Even though the two interface components no

longer parallel each other in terms of functional design, this technique retains a more

robust concept of server client communication and allows greater user understanding of

the communications process.

Video display capabilities are implemented through the QuickTime for Java

package provided by Apple. To preserve functional modularity, all parsing of story and

states are still controlled by the same classes, only the data structure of the

NarrativeFragment class was slightly expanded. All relevant information is then passed to

the VideoArea class, which manipulates all properties of video sequencing and playback

according to those parameters. Under this method, the relationships between engine

decisions and video sequencing remain controlled by the Presentational Environment.

This implementation allows for easy accessibility to all visual presentation

characteristics. Because the effects of agent behavior on story playback is a potentially

large and exciting future project, I feel that the best implementation for the Presentational

Environment is for it to possess all control of display options.

The process of integrating QuickTime for Java with Sun’s Java v1.3 API was

tricky and filled with idiosyncrasies. Hopefully later versions of the QuickTime for Java

package will eliminate all those problems. Two notable problems of integration still

50

remain in the system. Firstly, the video display area, QTCanvas from the QuickTime

package, does not integrate well with Swing components. Even though the canvas is

wrapped in a JScrollPane, it would roll out of the scrollable area and cover some action

buttons belonging to the Representational Environment. Secondly, the video display

encounters inconsistencies that aren’t always replicable. Each sequence does not always

reorder the currently playing clip to the foreground. All video sequences also do not clear

properly, causing phantom audio streams to play alongside other video streams.

Many other details were added to the interface. The user can now save and load

agents separately from the entire story setting. She can also save a particular story’s text

version into a file. The narrative framework in the Structural Environment now supports

multiple classes and the drag and drop method of reordering elements to increase ease of

usage. Video clips can be chosen by simply clicking on the video column of the desired

clip, and a selection window will appear automatically for the user to designate a file

either from the local file system or from a URL location. To enable displaying of links

information in the Representational table, the data format in ASTableModel.java was

expanded to support additional information. However, this field represents transient

information and will not be saved.

Because most new research revolving around software agents’ and video editing

behaviors will occur in the interface domain, I’ve attempted to create robust and modular

display components that are easily understandable and modifiable. This remains one of

the most potentially exciting areas of expansion in this system.

51

4.2.2 The ‘agentstories’ package

Figure 11 : Module Dependency Diagram of ‘agentstories’ package

ControllerNarrativeEngine

Narrative

NarrativeFragment

Character

NarrativeClass

MediaDescriptor

MediaDescriptorInterface

CharacterSet

CharacterContainer
Interface

Set

NarrativeOutline

NarrativeFragmentSet

SetConstrainerInterface

Agent

POVBehavior

CharacterBehavior

NarrativeBehavior

'as' package

Behavior

ConflictBehavior

PassThroughBehavior

NarrativeClass
Behavior

NarrativeFragment
Link

Legend

class

static method

interface

strong
dependency

subclass
relationship

52

The agentstories package contains all classes that detail the engine and agent

behaviors. Even though the roles of narrative engine and story agent in selecting story

sequence may overlap, their code structures are reasonably disjoint, as can be seen in the

package MDD. When the user runs the engine to create a story, the Controller will parse

all story information and structures and set the engine with those parameters. Then, the

engine will receive the specifications of an agent and call the agent to create a selection

of story clips.

Most of the amendments implemented in this class involved adding back engine

functionalities which were available in the original, mTropolis version of Agent Stories,

but were not yet ported to Java. In particular, the previous Java version of Agent Stories

only contained the ability to make ‘supporting’ and ‘opposing’ links between clips. This

connections are considered bi-directional and mutually exclusive. When a clip is chosen

to support or oppose another clip, then the latter clip will automatically be assigned to

support or oppose the first. A pair of clips can only retain either a supporting or an

opposing relationship.

In this version, all of the original links are not available. Both Causal Precede

links and Factual Precede links affects the sequence of the story by imposing an ordering

of clips. This decision is made in the Agent.constrainSetOnNarrative method because this

function limits the set of potential clips by looking at previous clips that have already

been added to the story. At this point, I’ve also deleted the possibility of adding the same

clip twice in one story, though it is very possible that such an arrangement may be

reinserted at a later time.

53

The Must Include link is considered a second class link, which means that the link

is not represented in the Structural Environment, much like the Precede links. If the

engine cannot fulfill this requirement it will simply continue the algorithm. It will not fail

in an algorithm if it does not satisfy this link. In the NarrativeEngine.getNarrative

method, the engine first calls upon the agent to create a queue of available clips

connected by Must Includes links. Whenever the engine had a choice of multiple clips

from which to select, it would look in the Must Include queue to see if one of those clips

are also in the queue. This action is called in the Agent.constrainSetOnRule method.

The Conflict/Resolution link is considered a first class link because Conflict and

Resolution classes can be linked in the Structural Environment. As a sidenote, this

functionality is not yet possible in the current code version, but was originally available.

This option was not implemented because linking classes in the Structural Environment is

a significant problem completely distinct from the issue of adding links between story

clips in the Representational Environment. As is currently implemented, if the narrative

framework contains conflict instances and then resolution classes, then upon reaching the

resolution class, the engine will limit the fragment set to only resolutions clips which

have been linked to the conflict clips already chosen. In the original implementation of

Agent Stories, linking conflict and resolution in the narrative framework would further

limit the selection of clips to be even more specific. If the user chooses not to link these

classes then both the original and the current engine would run identically.

The data structures in the ‘agentstories’ package are very complex and

interlocking. Making changes to clip information and trying to form conflict-resolution

pairs in the narrative framework often requires amendments in multiple files. One helpful

54

modification to the code would be to increase documentation and code modularity so that

future changes to the engine or agent characteristics will be not necessitate understanding

the entire engine selection process and a majority of the other files of the package.

4.3 Unfinished features and suggestions for future amendments

Asides from some unfinished features already mentioned in the previous sections,

the current system continues to lack some original functionalities. My amendments

mainly concerned adding link handling capabilities back into the engine. Much of the

agent behaviors have remained neglected.

Main POV: Speaker Intro
 Main, Minor, Dramatic, Sound
 Most Material, Least Material, Most
 Oppositional, Least Oppositional, Most
 Supportive, Least Supportive, Random
 Specific
 Character Name____

 Main POV, Alternative
 Single
 Multiple
 How Many?___
 Specific
 Character Name_____

Figure 12 : Agent behavior for two sample narrative classes

This figure gives a good sample of typical agent behaviors in the original system.

For the Main POV, the agent can choose a random character. For all classes except Main

POV, Diversion, and Ending, the agent can be given the “How Many?” option, meaning

that in the Writer Feedback Environment, it will display multiple possible clips which can

fit into a certain class in the narrative framework. Due to the limitations of a stripped

down WFE, this option is not easily implementable at this stage. For the narrative classes

Main POV, Speaker Intro, Character Intro, and Ending, the user can also specify a

particular character’s name.

55

In addition to agent specifications, the current version is also missing the ability to

concatenate an agent behavior from a number of sub-behaviors. Originally, the Boolean

conjunctions AND, OR, and the prefix NOT can optionally be used between behaviors

for added user control. The default conjunction of OR is assumed to exist between

behaviors if the user neglected to specify any. Because we do not have the option of

specifying conjunctions right now, the default OR is automatically built into the engine

algorithm. To add this amendment to our system in the future, we will need to add these

actions to the interface, which would mean that the display will become even more space

sparse.

As noted from Francisco Tanudjaja’s AUP report, the ‘agentstories’ package

originally included many more specific agent behavior specifications : CharacterIntro,

CharacterIntroBehavior, Conflict, Diversion, DiversionBehavior, Ending,

EndingBehavior, Negotiation, NegotiationBehavior, Resolution, ResolutionBehavior,

SpeakerIntroBehavior. This files can be reintegrated into the code if in the future we

decide to increase the flexibility of the engine algorithm.

Another way of augmenting engine algorithm is by increasing its efficiency.

“Most of the loop operations are in order O(N), with order O(N2) being maximum. The

code is not tailored for most efficiency, but rather to cover a broad range of topics in a

short time” (Tanudjaja 10).

56

5 Users Manual

Because the interface has been sized for efficiency and not transparent usage, I

feel that providing a user manual is essential for knowing all features of this system, for

the casual user as well as a long time writer.

• The applet has been hardcoded to request connection to a specific server. To run the

applet, run the MultiServer.java file from a networked computer and remember its

name. Then go into the ASApplet.java file’s init() method and input the computer

name by changing the line : s = new Socket(“***”, PORT);. Replace *** with desired

computer name and recompile. Then you can run the applet. Note : applet works right

now with appletviewer.exe, which is packaged with Sun’s Java SDK. It does not yet

work in a browser.

• To create a sequence, the user must first create a story by clicking on “Create Story”.

This will display the text sequence in the text display panel. Only then can the user

view the video sequence of the created story by clicking on “Run Story Video”.

• To link multiple clips, hold down the Ctrl key to select multiple clips then click the

links button desired. For Precedes links, we can specify one clip to precede multiple

clips. Select the first clip, then select other clips to follow the first by holding down

Ctrl and clicking on as many others as desired. Then choose the desired Precedes link.

This procedure will add a Precedes link from the first clip to each subsequent clip. No

links will be added between subsequent clips.

• The narrative framework (“Your Selection:” panel) in the Structural Environment can

now be reordered with a simple drag and drop methodology.

57

Bibliography

Brooks, Kevin Michael. Metalinear Cinematic Narrative: Theory, Process, and Tool.

MIT Ph.D. Thesis, 1999.

Davenport, Glorianna. Synergistic StoryScapes and Constructionist Cinematic Sharing.

IBM Systems Journal, Vol 39, Nos. 3 & 4, pp. 456-469, 2000.

Franzke, Marita. Turning Research into Practice : Characteristics of Display-Based

Interaction. in Proc. CHI ’95. Human Factors in Computing Systems, (1995),

ACM, pp 421-428.

Furnas, George W. Effective View Navigation. CHI ’97. Human Factors in Computing

Systems, (1997), ACM.

Murray, Janet. Hamlet on the Holodeck. New York: The Free Press, 1997.

Tanudjaja, Francisco. (MIT Media Laboratory, Massachusetts Institute of Technology).

Agent Stories Part II. AUP Report. Cambridge, MIT Media Lab. 2000 May 22.

22p.

Terwilliger, Robert B. and Polson, P. Relationships Between Users’ and Interfaces’ Task

Representations. CHI ’97. Human Factors in Computing Systems, (1997), ACM.

Tiongson, Phillip Rodrigo. ActiveStories: Infusing author’s intention with content to tell

a computationally expressive story. MIT MS Thesis, 1998.

